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Joseph Durham, Oxford University Museum of Natural History



Farrry VWhat do we know about Euclid?
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» Born ca. 300 BCE
» Prominent mathematician of antiquity — “father of geometry’

Through the

artist’s eye ,

Background

The Elements: » Authored mathematical treatise Elements;

old and new . . . .
foundation for logic, mathematics and modern science

Lincoln
ST » Taught at Alexandria during time of King Ptolemy |

Number theory

» Provided rigorous foundation:

Bk VII, Prop. 1

Algorithms for > definitions
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Efficiency > proofs

Extension

» Author of other books, including Optics and Elements of Music

An application

» Response to king (?): “There is no royal road to geometry.”
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“He studied and nearly mastered the
Six-books of Euclid (geometry) since he
was a member of Congress. He began a
course of rigid mental discipline with the
intent to improve his faculties, especially
his powers of logic and language. Hence
his fondness for Euclid, which he carried
with him on the circuit till he could
demonstrate with ease all the propositions
in the six books; often studying far into
the night, with a candle near his pillow,
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snoring.”

—Lincoln's law partner, William Herndon
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» Number theory is the study of the integers
Through the » Euclid introduced concepts of number theory:
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» whole number

The Elements: > prime number

old and new » composite number
» perfect number

(eg, 6=1+2+328=1+2+4-+7+14)
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connection
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Bk VI, Prop. 1 » Major results
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Efficiency . . .
vencion » Whole numbers can be uniquely factored into primes

(e.g., 1035 =3-3-5-23 and this is unique)
» There are an infinite number of primes
> If 2° — 1 is prime, then 2P71(27 — 1) is perfect
(e.g., for p = 3,2% — 1 is prime and so 22(2% — 1) = 28 is perfect)

An application
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A number is a part of a number, the less of the greater, when it
measures the greater.

‘ ‘ ‘ ' 2.is part of 6
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A prime number is that which is measured by an unit alone.
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Numbers prime to one another are those which are measured by an
unit alone as a common measure.
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Extension

An application
A perfect number is that which is equal to its own parts.

6=1+2+3:

I T T 1
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Book VII, Proposition 1: example

140
107
74
41

33
33
33
33
33

action

subtract
subtract
subtract
subtract

swap

: 140 — 33 = 107
: 107 —-33 =74
174 —-33 =41
:41-33=8
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Book VII, Proposition 1: example

140
107
74
41

33

33
33
33
33
33

action

subtract:
subtract:
subtract:

subtract:

swap

subtract:

140 — 33 = 107
107 —33 =74
74—-33=41
41 -33=8

33-8=25
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Book VII, Proposition 1: example

140
107
74
41

33
25

33
33
33
33
33

action

subtract:
subtract:
subtract:

subtract:

swap

subtract:

subtract:

140 — 33 = 107
107 —33 =74
74 — 33 =41
41-33=8
33-8=25
25—8=17



EASTERN Book VII, Proposition 1: example
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X y  action

e 140 33 subtract: 140 — 33 = 107
g 107 33 subtract: 107 —33 =74
o an e 74 33 subtract: 74 — 33 =41
cometion 41 33 subtract: 41 —33 =8
S o B sy

Gt 33 8 subtract: 33 —8 =25
Efficiency 25 8 subtract: 25 — 8 =17
S

17 8 subtract: 17 —-8=9

An application



EASTERN Book VII, Proposition 1: example

Euclid and the
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X y  action

L e 140 33 subtract: 140 — 33 = 107
g 107 33 subtract: 107 —33 =74
o 74 33 subtract: 74 — 33 =41
cometion 41 33 subtract: 41 —33 =8
S o B sy
Agriss o 33 8 subtract: 33 —8 =25
Efficiency 25 8 subtract: 25 — 8 =17
17 8 subtract: 17 -8 =9

9 8 subtract: 9—-8=1
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Book VII, Proposition 1: example

140
107
74
41

33
25
17

33
33
33

33

O O © © ©

action

subtract:
subtract:
subtract:

subtract:

swap

subtract:
subtract:
subtract:

subtract:

140 — 33 = 107
107 —33 =74
74 —33 =41
41 -33=8
33-8=25
25 -8=17
17-8=9
9-8=1

stop: 140 and 33 are prime to each other
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» Given two positive whole numbers, say 1035 and 759
» We are looking for a common divisor (measure)

» 1035 =3-345 and 759 = 3 - 253 so 3 is a common divisor
» 1035 =23 -45 and 759 = 23 - 33 so 23 is a common divisor

» We want the greatest common divisor, however. Is it 237
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Greatest Common Divisor (Measure)

v

v

v

Given two positive whole numbers, say 1035 and 759
We are looking for a common divisor (measure)
» 1035 =3-345 and 759 = 3 - 253 so 3 is a common divisor
» 1035 =23 -45 and 759 = 23 - 33 so 23 is a common divisor
We want the greatest common divisor, however. lIs it 237
No.

1035 =69 - 15 and 759 = 69 - 11, so 69 is a common divisor.
Is it the greatest common divisor?
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Given two positive whole numbers, say 1035 and 759

» We are looking for a common divisor (measure)

» 1035 = 3-345 and 759 = 3- 253 so 3 is a common divisor
» 1035 =23 -45 and 759 = 23 - 33 so 23 is a common divisor

» We want the greatest common divisor, however. Is it 237
» No.

1035 =69 - 15 and 759 = 69 - 11, so 69 is a common divisor.
Is it the greatest common divisor?

Yes.
1035 =3-3-5-23 and 759 =3-11-23

We want a method to determine the greatest common

divisor of any pair (a, b) of whole numbers and we
don't want to work “too hard."
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it ) » For each candidate, check if it is a common divisor
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connection » Stop when a common divisor has been found: this is the
Number theory greatest one
Bk VII, Prop. 1
Algorithms for
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& For large values of a and b, this is very labor-intensive!
Efficiency

We can do much, much better.

Extension

An application
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Euclid’s idea

Euclid’s (simplified) rule

Suppose x and y are positive integers with x > y. Then
ged(x, y) = ged(x — y,y).
Proof sketch

> ged(x,y) < ged(x —y,y)

> ged(x — y,y) < ged(x, y)
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Euclid’s idea: proof details, part 1

Show ged(x, y) < ged(x —y, )
Let d be a common divisor of x and y.

We need to show that d | (x — y) and d|y.
Since d | x and d |y, we can write x = dg; and

y = dqg,. Then,
X —y=dq — dg
= d(Ql - Q2)
= dgs

In other words, d | (x — y).
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We need to show that d|x and d | y.
Since d|(x — y) and d |y, we can write x — y = dg;

The Elements:
old and new

Lincoln

connection and y = dg,. Then,

Number theory

Bk VII, Prop. 1 X = (X — y) aF y
Algorithms fc

g‘f‘cirl ms for = dq]. R dq2
Efficiency = d(Ch L q2)
Extension

An application = dq3

In other words, d | x.



Euclid's simplified rule: if x > y then ged(x, y) = ged(x — vy, y)

<0



Euclid's simplified rule: if x > y then ged(x, y) = ged(x — vy, y)

<0
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X y  action
1035 759 subtract: 1035 — 759 = 276
Background 276 759 swap
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Method 2: repeated subtraction

Euclid's simplified rule: if x > y then gecd(x,y) = ged(x — vy, y)

X
1035
276
759
483

y
759

759
276
276

action

subtract: 1035 — 759 = 276
swap

subtract: 759 — 276 = 483
subtract: 483 — 276 = 207
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X y  action
st oo 1035 759 subtract: 1035 — 759 = 276
Background . 276 759 swap
” and new 759 276 subtract: 759 — 276 = 483
connection 483 276 subtract: 483 — 276 = 207
e 207 276 swap
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EASTERN Method 2: repeated subtraction

B iz Euclid's simplified rule: if x > y then gecd(x,y) = ged(x — vy, y)

Greatest
Common Divisor

X y  action

Through e 1035 759 subtract: 1035 — 759 = 276
ikg‘ | 276 759 swap

759 276 subtract: 759 — 276 = 483
e 483 276 subtract: 483 — 276 = 207
e 207 276 suap

Agrims for 276 207 subtract: 276 — 207 = 69
Efficiency

Extension

An application



EASTERN Method 2: repeated subtraction

B iz Euclid's simplified rule: if x > y then gecd(x,y) = ged(x — vy, y)

Greatest
Common Divisor

% y  action
Lo e 1035 759 subtract: 1035 — 759 = 276
ika‘ . 276 759 swap
of(‘fa..(.“'.‘.';'&”' 759 276 subtract: 759 — 276 = 483
e 483 276 subtract: 483 — 276 = 207
L 07 2t suap
SR 276 207 subtract: 276 — 207 = 69
Effciency 69 207 swap
St

An application



EASTERN Method 2: repeated subtraction

B iz Euclid's simplified rule: if x > y then gecd(x,y) = ged(x — vy, y)

Greatest
Common Divisor

X y  action
rtisteoge 1035 759 subtract: 1035 — 759 = 276
e 276 759 swap
759 276 subtract: 759 — 276 = 483
comecion 483 276 subtract: 483 — 276 = 207
o 207 276 swap
Algorthms or 276 207 subtract: 276 — 207 = 69
Efficiency 69 207 swap

207 69 subtract: 207 — 69 = 138

An application



Easrery  Method 2: repeated subtraction

Euclid and the Euclid's simplified rule: if x > y then gecd(x,y) = ged(x — vy, y)

Greatest
Common Divisor

X y action
Wi 1035 759 subtract: 1035 — 759 = 276
ika" . 276 759 swap
ni(‘f.,..,."'.'.'fiv'“ 759 276 subtract: 759 — 276 = 483
conmestion 483 276 subtract: 483 — 276 = 207
S 0 216 swap
Mot for 276 207 subtract: 276 — 207 = 69
Efficiency 69 207 swap

207 69 subtract: 207 — 69 = 138
138 69 subtract: 138 — 69 = 69

An application



Easrery  Method 2: repeated subtraction

B iz Euclid's simplified rule: if x > y then gecd(x,y) = ged(x — vy, y)

Greatest
Common Divisor

X y action
Wi 1035 759 subtract: 1035 — 759 = 276
ika" . 276 759 swap
ni(‘f.,..,."'.'.'fiv'“ 759 276 subtract: 759 — 276 = 483
conmestion 483 276 subtract: 483 — 276 = 207
S 0 216 swap
Mot for 276 207 subtract: 276 — 207 = 69
Efficiency 69 207 swap

207 69 subtract: 207 — 69 = 138
138 69 subtract: 138 — 69 = 69
69 69 subtract: 69 —69 =0

An application



Farrry  Method 2: repeated subtraction

Euclid and the Euclid's simplified rule: if x > y then gecd(x,y) = ged(x — vy, y)

Greatest
Common Divisor

X y action
e 1035 759 subtract: 1035 — 759 = 276
e 276 759 swap
750 276 subtract: 759 — 276 — 483
483 276 subtract: 483 — 276 = 207
R g
g 276 207 subtract: 276 — 207 = 69
Efficiency 69 207 swap

207 69 subtract: 207 — 69 = 138
138 69 subtract: 138 — 69 = 69
69 69 subtract: 69 —69 =0

0 69 stop: 69 is the greatest common divisor

An application
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Efficiency If x and y are positive integers with x > y, then
Extension ged(x,y) = ged(x mod y, y) = ged(y, x mod y).

An application



Euclid's rule: if x > y then ged(x,y) = ged(y, x mod y)

<0



Euclid's rule: if x > y then ged(x,y) = ged(y, x mod y)

<0
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Method 3: Euclid’s method

Euclid’s rule: if x > y then gcd(x, y) = ged(y, x mod y)

X

y

1035 759

759
276

276
207

action

divide: 1035 =1 - 759 + 276
divide: 759 = 2 - 276 + 207
divide: 276 =1 - 207 + 69
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e Euclid's rule: if x > y then gcd(x,y) = ged(y, x mod y)
Background

The Elements: X y action

old and new

Lincoln 1035 759 divide: 1035 =1 - 759 + 276

connection

Number theory 759 276 divide: 759 = 2. 276 + 207
S e 276 207 divide: 276 =1 - 207 + 69

Algorithms for

&= 207 69 divide: 207 =3-69+0

Efficiency
Extension

An application
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Method 3: Euclid’s method

Euclid’s rule: if x > y then gcd(x, y) = ged(y, x mod y)

X
1035
759
276
207
69

y
759

276
207
69

action

divide: 1035 =1 - 759 + 276
divide: 759 = 2 - 276 + 207
divide: 276 =1 - 207 + 69
divide: 207 =3-69+0

stop: 69 is the greatest common divisor
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Euclid’s method

We might call Euclid’s method the granddaddy of all
algorithms, because it is the oldest nontrivial algorithm that
has survived to the present day.

Donald Knuth
The Art of Computer Programming



Euclid’s rule

public static int gcd(int x, int y)

{
if (y == 0)
return x;
else

return gcd(y, x % y);

<0
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Efficiency of Euclid’s algorithm

Gabriel Lamé
1795 - 1870

(French; not Greek, not ancient!)

Lamé’s theorem

To find the greatest common divisor of
integers x and y using Euclid’s algorithm
takes at most 5k steps, where k is the
number of digits of y.



Farrry  An extension of Euclid’s algorithm
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In addition to finding gcd(x,y) = d, we might want values a and b
such that
ax+ by =d

We know gcd(1035,759) = 69. In addition,

3.1035 + (—4) - 759 = 69

A small modification to Euclid’s method determines these two values.



Fasiry  Euclid contributes to the Internet age

Euclid and the
Greatest

Common Divisor . .

» Public-key cryptography: how to keep a secret, yet still
communicate?

Through the

s » Two players, traditionally known as “Alice” and “Bob”

Background
» Bob:

The Elements:

old and new » chooses two large prime numbers, p and g
neeln » computes a public key that everyone can know. This key
includes the product pg, but not the two primes.

Number theory

BK VI, Prop. 1 » computes a private key, computed with an extended version of
At Euclid's algorithm

ged .

Efficiency > Al Ice.

Extension > encodes a message, using Bob's public key

A e » Bob decodes the message using his private key

Number theory, once thought to be an abstract area of mathematics
without application, is anything but. Hats off to Euclid!
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